Mathsarc Education

A learning place to fulfil your dream of success!

IIT JEE Main/Adv

ELLIPSE & HYPERBOLA

SECTION - A (MATHEMATICS)

PART - I

SINGLE OPTION CORRECT (+ 4, - 1, 0)

- 1. Let a tangent to the curve $y^2 = 24x$ meet the curve xy = 2 at the points A and B. Then the mid points of such line segments AB lie on a parabola with the
 - (A) Length of latus rectum 3/2

(B) directrix 4x = -3

(C) Length of latus rectum 2

- (D) directrix 4x = 3
- 2. Let T and C respectively be the transverse and conjugate axes of the hyperbola $16x^2 y^2 + 64x + 4y + 44$ = 0. Then the area of the region above the parabola $x^2 = y + 4$, below the transverse axis T and on the right of the conjugate axis C is:

- (A) $4\sqrt{6} + \frac{28}{3}$ (B) $4\sqrt{6} \frac{44}{3}$ (C) $4\sqrt{6} + \frac{44}{3}$
- 3. If the tangent at a point P on the parabola $y^2 = 3x$ is parallel to the line x + 2y = 1 and the tangents at the points Q and R on the ellipse $\frac{x^2}{4} + \frac{y^2}{1} = 1$ are perpendicular to the line x - y = 2, then the area of the triangle POR is:
 - (A) $\frac{3\sqrt{5}}{2}$
- (B) $3\sqrt{5}$
- (C) $\frac{9}{\sqrt{5}}$

(D) $5\sqrt{3}$

- 4. If the maximum distance of normal to the ellipse $\frac{x^2}{4} + \frac{y^2}{b^2} = 1, b < 2$, from the origin is 1, then the eccentricity of the ellipse is :
 - (A) $\frac{1}{2}$

- (B) $\frac{\sqrt{3}}{4}$
- (C) $\frac{\sqrt{3}}{2}$
- (D) $\frac{1}{\sqrt{2}}$
- 5. Let H be the hyperbola, whose foci are $(1 \pm \sqrt{2}, 0)$ and eccentricity is $\sqrt{2}$. Then the length of its latus rectum is
 - (A) 3/2

(B) 2

(C) 3

- (D) 5/2
- 6. If $\left(a, \frac{1}{a}\right)$, $\left(b, \frac{1}{b}\right)$, $\left(c, \frac{1}{c}\right)$ & $\left(d, \frac{1}{d}\right)$ are four distinct points on a circle of radius 4 units then, (abcd) is equal to
 - (A) 4

(B) 1/4

(C) 1

- (D) 16
- 7. x 2y + 4 = 0 is a common tangent to $y^2 = 4x & \frac{x^2}{4} + \frac{y^2}{b^2} = 1$. Then the value of b and the other common tangent are given by:
 - (A) $b = \sqrt{3}$; x + 2y + 4 = 0

(B) b = 3; x + 2y + 4 = 0

(C) $b = \sqrt{3}$; x + 2y - 4 = 0

- (D) $b = \sqrt{3}$; x 2y 4 = 0
- 8. Let a hyperbola whose center is at origin. A line x + y = 2 touches this hyperbola at P (1, 1) and intersect the asymptotes at A and B such that AB = $6\sqrt{2}$. Equation of asymptote is

(A)
$$2x^2 + 5xy + 2y^2 = 0$$

(B)
$$3x^2 + 6xy + 4y^2 = 0$$

(C)
$$2x^2 - 5xy + 2y^2 = 0$$

(D) None of these

- Tangents are drawn to the hyperbola $4x^2 y^2 = 36$ at the point P and Q. If these tangents intersect at the 9. point T (0, 3) then the area (in sq. units) of Δ PTQ is -
 - (A) $54\sqrt{3}$
- (B) $60\sqrt{3}$
- (C) $36\sqrt{5}$
- (D) $45\sqrt{5}$
- 10. Two sets A and B are as under A = $\{(a, b) \in R \times R : |a 5| < 1 \text{ and } |b 5| < 1\}$;

B = $\{(a, b) \in \mathbb{R} \times \mathbb{R} : 4(a-6)^2 + 9(b-5)^2 \le 36\}$. Then: -

(A) $A \subset B$

(B) $A \cap B = \phi$ (an empty set)

(C) neither $A \subset B$ nor $B \subset A$

- (D) $B \subset A$
- 11. Locus of the feet of the perpendiculars drawn from either focus on a variable tangent to the hyperbola $16y^2 - 9x^2 = 1$ is
 - (A) $x^2 + y^2 = 9$
- (B) $x^2 + y^2 = 1/9$ (C) $x^2 + y^2 = 7/144$ (D) $x^2 + y^2 = 1/16$
- 12. If the curves $y^2 = 6x$, $9x^2 + by^2 = 16$ intersect each other at right angles, then the value of b is:
 - (A) 7/2
- (B) 4

(C) 9/2

- (D) 6
- 13. Let $\lambda x 2y = \mu$ be a tangent to the hyperbola $a^2 x^2 y^2 = b^2$. Then $\left(\frac{\lambda}{a}\right)^2 \left(\frac{\mu}{b}\right)^2$ is equal to:
 - (A) 2

(B) - 4

(C) 2

- (D) 4
- 14. If the normal at the point $P(\theta)$ to the ellipse $5x^2 + 14y^2 = 70$ intersect it again at the point $Q(2\theta)$, then
 - (A) $\cos \theta = -\frac{2}{3}$
- (B) $\sin \theta = -\frac{2}{3}$ (C) $\sin \theta = -\frac{1}{3}$
- (D) $\cos \theta = -\frac{1}{2}$

15. Equation of the circle passing through the foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$, and having centre at (0,3) is

(A)
$$x^2 + y^2 - 6y - 7 = 0$$

(A)
$$x^2 + y^2 - 6y - 7 = 0$$
 (B) $x^2 + y^2 - 6y + 7 = 0$

(C)
$$x^2 + y^2 - 6y - 5 = 0$$
 (D) $x^2 + y^2 - 6y + 5 = 0$

(D)
$$x^2 + y^2 - 6y + 5 = 0$$

16. If a tangent of slope 'm' at a point of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ passes through (2a, 0). If e is eccentricity of conic, then

(A)
$$m^2 + e^2 = 1$$

(B)
$$2m^2 + e^2 = 1$$

(C)
$$3m^2 + e^2 = 1$$

(D)
$$m^2 + 2e^2 = 1$$

17. The eccentricity of conic $4x^2 - 9y^2 = 36$, is

(A)
$$\frac{\sqrt{13}}{4}$$

(B)
$$\frac{\sqrt{5}}{3}$$

(C)
$$\frac{\sqrt{13}}{2}$$

(D)
$$\frac{\sqrt{13}}{3}$$

18. For different values of α , the locus of point of intersection of two straight lines $\sqrt{3}x - y - 4\sqrt{3}\alpha = 0$ and $\sqrt{3}\alpha x + \alpha y - 4\sqrt{3} = 0$ is

(A) A hyperbola with
$$e = 2$$

(B) an ellipse with
$$e = \sqrt{\frac{2}{3}}$$

(C) A hyperbola with
$$e = \sqrt{\frac{19}{16}}$$

(D) an ellipse with
$$e = \frac{3}{4}$$

19. The equation $2x^2 + 3y^2 - 8x - 18y + 35 = k$ represents

(A) no locus if k > 0

(B) an ellipse if k < 0

(C) a point if k = 0

(D) a hyperbola if k > 0

20. For the hyperbola $\frac{x^2}{\cos^2\alpha} - \frac{y^2}{\sin^2\alpha} = 1$, $\left(0 < \alpha < \frac{\pi}{2}\right)$, which one of the following is independent of α

(A) Eccentricity

(B)Abscissa of foci

(C) directrix

PART - II

Integer Type (+ 4, -1, 0).

- 21. The line x = 8 is the directrix of the ellipse $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with the corresponding focus (2, 0). If the tangent to E at the point P in the first quadrant passes through the point $(0, 4\sqrt{3})$ and intersects that x-axis at Q then $(3PQ)^2$ equal to
- 22. Number of points from where two mutually perpendicular tangents can be drawn to hyperbola $\frac{x^2}{5} \frac{y^2}{7} = 1.$
- 23. Let a tangent to the curve $9x^2 + 16y^2 = 144$ intersect the coordinate axes at the points A and B. Then, the minimum length of the line segment AB is
- 24. Let *C* be the largest circle centered at (2, 0) and inscribed in the ellipse $\frac{x^2}{36} + \frac{y^2}{16} = 1$. If (1, α) lies on *C*, then $10\alpha^2$ is equal to
- 25. The vertices of a hyperbola H are (±6, 0) and its eccentricity is $\sqrt{5}/2$. Let N be the normal to H at a point in the first quadrant and parallel to the line $\sqrt{2}x + y = 2\sqrt{2}$. If d is the length of the line segment of N between H and the y-axis then d^2 is equal to
- 26. If two tangents drawn from a point (α, β) lying on the ellipse $25x^2 + 4y^2 = 1$ to the parabola $y^2 = 4x$ are such that the slope of one tangent is four times the other, then the value of $(10\alpha + 5)^2 + (16\beta^2 + 50)^2$ equals _____

ROUGH SPACE

 $\leftarrow \sim \blacksquare : \boxdot \boxdot \boxdot$ Best of Luck! $\boxdot \boxdot ≔ \sim \mapsto$

- 27. Let the hyperbola H: $\frac{x^2}{a^2} y^2 = 1$ and the ellipse E: $3x^2 + 4y^2 = 12$ be such that the length of latusrectum of H is equal to the length of latus-rectum of E. If $e_H \& e_E$ are eccentricities of H and E respectively, then the value of $12(e_H^2 + e_E^2)$ is equal to _____.
- 28. For real numbers a, b (a > b > 0), let Area $\left\{ (x,y): x^2 + y^2 \le a^2 \text{ and } \frac{x^2}{a^2} + \frac{y^2}{b^2} \ge 1 \right\} = 30\pi$ and Area $\left\{ (x,y): x^2 + y^2 \ge b^2 \text{ and } \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1 \right\} = 18\pi$. Then the value of $(a b)^2$ is equal to _____.
- 29. Let $H: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1$, a > 0, b > 0, be a hyperbola such that the sum of lengths of the transverse and the conjugate axes is $4(2\sqrt{2} + \sqrt{14})$. If the eccentricity H is $\frac{\sqrt{11}}{2}$, then value of $a^2 + b^2$ is equal to _____
- 30. Let the eccentricity of the hyperbola $H: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ be $\sqrt{\frac{5}{2}}$ and length of its latusrectum be $6\sqrt{2}$, If y = 2x + c is a tangent to the hyperbola H, then the value of c^2 is equal to _____

ROUGH SPACE

Visit Us: https://www.mathsarc.com

ANSWER KEY

1. D

5. B

9. D 13. D

17. D

21. 39

25. 216

29.88

2. A

6. C

10. A

14. A

18. A

22. 0

26. 2929

30. 20

3. B

7. A

11. D

15. A

19. C

23. 7

27. 42

4. C

8. A

12. C

16. C

20. B

24. 118

28. 12

VIVAAN ICSE BOARD - 8TH

DHRUVA RAUT

JEE Main + Adv 2023

AIR - 3450

SHARV MANDAR

JEE Advanced 2022

BITS GOA

SOUMIL GHOSH

94.8 % CBSE

JEE MAIN 99.38 %LE

AIR - 1233 GEN-EWS RANK: 134

JEE Advanced 2022

GAURAV DALVI

99.95 %LE